VALIDITY OF THE PRIGOGINE THEOREM IN
ESTABLISHING A SIGNIFICANTLY NONEQUILIBRIUM
STEADY STATE OF A THERMODYNAMIC SYSTEM

I. S. Borovkov UDC 536.7

It is concluded that there exists a certain class of thermodynamic systems for which the Prigo-
gine theorem is satisfied in setting up a steady state significantly different from a equilib-
rium state, .

The Prigogine theorem is a theorem of the thermodynamics of irreversible processes, It asserts that
a steady (i. e., time-independent) state of a thermodynamic system in which irreversible processes occur is a
state corresponding to the minimum possible production of entropy in the given conditions [1, 2]. The Prigo-
gine theorem has been proved for various thermodynamic systems (homogeneous, heterogeneous, continuous)
on the assumption that this steady state is close to equilibrium, when it is possible to use a phenomenological
or generalized transfer law with constant coefficients, and also the Onsager reciprocity relation [1-3]. It
remains to establish the validity of the Prigogine theorem for the setting up, in a thermodynamic system, of
steady states that are far from equilibrium, i.e., states in which the production of entropy is finite.

The present work examines an example of the setting up of a steady state that is, on the one hand, signi-
ficantly different from a quasiequilibrium state and, on the other, is characterized by the minimum possible
production of entropy, i.e., satisfies the Prigogine theorem.

We consider the propagation of detonation waves in a brisant gas which is initially at rest, for two cagses:
plane waves induced at the end of a cylindrical tube with thermally insulated walls and spherical waves in-
duced at some point of space,

According to current ideas [4, 5], the leading edge of the detonation wave is a shock wave in the initial
gas. In this wave, the gas is compressed and heated to such a degree that combustion is initiated. As a
result, heat is liberated and, in the case of a purely endothermic reaction considered below, the pressure
of the gas decreases as long as the reaction continues. In front of the detonation wave, the gas parameters
and, in particular, its entropy do not change. In the wave the entropy of the gas increases, since its leading
edge is a shock wave and, behind this edge, combustion occurs and heat is liberated. After the detonation wave
has passed (at the end of combustion), the gas motion in the cases considered is again isentropic.

Plane and spherical detonation waves may be induced, for example, by a sharp increase in pressure.
Directly after they are induced, the plane and spherical detonation waves are nonsteady in the general case.
However, after a certain lapse of time, they become steady; i.e., they attain some constant velocity [5, 6].

In other words, the detonation wave is an open thermodynamic system, in which irreversible transforma-
tions occur. Setting up steady plane and spherical detonation waves may be considered as an example of the
process of establishing a steady state in such a system.

After the considered detonation waves have been induced, the gas velocity at the points of induction (at the
closed end of the cylinder and at the center of the spherical wave) becomes zero. In both these cases, more-
over, none of the given characteristic parameters has the dimensionality length, and therefore the gas motion
arisingas a result of the passage ofa steady detonation wave should be self-modeling. If this is so, and if it is
assumed additionally that the gas velocity in front of the wave is zero, and that the gas in front of and behind
the wave is ideal, it is possible to show [7] that the gas velocity behind a steady detonation wave (whether
plane or spherical) cannot be subcritical. On the other hand, in accordance with the principle of reversibility
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[8], this velocity cannot be supersonie, since the gas velocity behind the shock wave (that is, the leading edge
of the detonation wave) is subcritical, while the combustion in the detonation wave is endothermic. (Accord-
ing to the principle of reversibility, a subcritical flow velocity may be increased by heating only to the velocity
of sound.) Hence, the gas velocity behind the steady detonation wave must be equal to the local velocity of
sound or, in other words, the wave must be a Chapman—Jouguet wave.

As is known, there have been many successful experimental confirmations of this conclusion [5, 91. .

Using the well-known procedure [7] of thermodynamic treatment of a shock wave, we shall show that
the velocity v¥ of the Chapman— Jouguet detonation wave and the entropy s¥ of unit mass of gas behind the wave
are the minimum possible values for the system parameters of the initial gas, However, we must first make
the following remark: Chapman [10] calculated the velocity of the detonation wave on the assumption that it was
a minimum, whereas Jouguet [11,12]assumed that the entropy of the gas behind the wave was a minimum;
Crussard {13] showed that these assumptions were eqmvalent while Zel'dovich [14] was the first to put.them
on a rigorous basis, Thus, the proof below that v1 and sz are minimum values should be considered ex-
clusively as a subsidiary simplifying aspect of the present work.

The condition of continuity of the mass, momentum, and energy flows through the detonation wave im-
plies that

V,+V
1 2(p2 —p) =0, (1)

W —w, -+

where the subscripts 1 and 2 refer, respectively, to the initial gas and the combustion products behind the
detonation wave; w is the enthalpy; V is the specific volume; and p is the pressure.

The dependence p, (V,) corresponding to Eq. (1) — called the detonation adiabatic curve — is shown in
Fig. 1, together with the point p;, Vy, which expresses the state of the initial gas, (Of course, p;, V; lies
below the detonation adiabatic curve. )

The condition of continuity of single mass and momentum flows through the detonation wave gives
another expression, first obtained by Michelson:
pr=p PV, =V, (2)

where j = v;/V, is the density of the mass flow through the wave.

In the plane (p,, V,) in Fig. 1, this relation gives a straight line passing through the point p;, Vi, since
it was derived without assuming continuity of the energy flow, and should therefore be valid for the initial
gas in any section within the detonation wave, and also for the combustion products.

For the sake of brevity, let us say that the Chapman—Jouguet point in the plane (p,, V,) is the point of
intersection of the detonation adiabatic curve and the Michelson straight line. Thus, taking 1nto account the
above remark on the gas Velocn:y behind the detonation wave, we must show that at the point p2 , V2 in Fig. 1
the velocity v1 and the entropy 32 are minimal, and that v2 is the velocity of sound.

Using Eqgs. (1) and (2), it is not difficult to show that

2172 2V2
w1+121 :wz—l_]g' . 3
For given constant values of w; and V, it follows that
v Vi
—d () = duw, + 2.d(j?) 4 VAV,

In accordance with well-known thermodynamic relations, the differential dw, may be written in the form dw, =
T,ds, + V,dp,, after which we obtain

2

Ve aey— Teas,— pav
dp2=——2VT (])“W Sy — AV,

On the other hand, differentiating Eq. (2) and solving it with respect to dp, gives
dpz = (Vl - Vz) d () — jzdvz' (4)

After equating the two expressions for dp,, we obtain
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Fig. 1. Detonation adiabatic curve (1)
and Michelson straight lines (2); ¢is the
angle between the Michelson straight
line and the p, axis,

Tyds, = & ; s d( (9)
or

ds _ =VP 1 ’ (6)

d(f?) 2 T,

Thus, it follows from Eq. (6) that increase in j? is associated with increase in Sg.

Consider again Fig. 1 for the angle ¢:

py—Ps
top = 2 "1
8Ty,

and in accordance with Eq. (2)
tge = j*

In the case of a straight line joining the points py, V; and p’;, V’;, the values of ¢ and tang are the minimum
possible. Hence, in view of the definition of j(j = v;/V,) the values of the velocity v, and, according to Eq.
(6), the entropy s, corresponding to this straight line are the minimum possible,.

Hence we now show that atthe point p’;, V;‘ , Vois equal to the velocity of the sound.

We again use Eq. (4), substituting into it the identity

av av, "
dv,= (22 ) 4 ——2) ds,,
2 ( 5132 )52 p2+( asz 7 Pz B

and also the expression for ds, from Eq. (5). We then divide by dp, and take into ccount that at the point pif,
V;‘, since j is a minimum,
i
{ d(j )]* -0
dp,

As a result, we find that at the point p;‘, V;_k,

1_}_]'2(%) :1_1?-:0
Opy /s

or

1066



since
x5 V2

c= 1/ ~_p ] and(i"i) - 2
a1V s apz [ ss €y
Since v* and s’{ are minimal, the production of entropy P* in the Chapman—Jouguet detonation wave is
also a minimum, In fact, the production of entropy in the thermodynamic system [1, 2] is the increase in unit

time of that part of the entropy which arises in the system itself. Accordingly, the production of entropy P
over unit area of any plane or spherical detonation wave is

1
P = Wvl (52 '—51)7

and
P* = »1— U‘l* (S;" ——S]_)
1
is the minimum possible value,

Moreover, P* is finite for given parameters of very large amplitude, for example, in the case of a
strong detonation wave, when the specific heat of reaction q is much larger than the internal thermal energy
cyiTy of the initial gas

and

T,
sF— 5 = T Cpe (;w T) dT — Y lp (;"p T) dT

’

o
o

where ¢, and ¢y are the specific heat of unit mass of gas for constant pressure and volume, respectively,
and ® = cp/cv, while

24 4
: M2+1 cuz
and
2%, —1) ¢

Pa= D1 ny— 1 ¢l :

Thus, in fact, the example given here may be considered as an example of the establishment in a thermo-
dynamic system of a steady state, on the one hand, significantly different from quasiequilibrium and, on the
other, characterized (in agreement with the Prigogine theorem) with the minimum possible production of en-
tropy. '

On this basis, it may evidently be assumed that there exists a certain class of thermodynamic systems,
and irreversible processes occurring in them, for which the Prigogine theorem, although as yet unproved, is
satisfied in establishing significantly nonequilibrium states.

An analogous assertion — admittedly in implicit form — was made in the second part of {15], when a
gas consisting of molecules with quantized energy was considered.

The next step, as we see it, is to subject this conclusion to detailed scrutiny and, if possible, to provide
a statistical basis for it. Actually, nonequilibrium states are at present studied using the evolution condition
rather than the Prigogine theorem [16]. However, "the existence of the evolution condition is a direct con-
sequence of the condition of stable equilibrium, and therefore an indirect consequence of the second law of
thermodynamies" [16]. Accordingly, the Prigogine theorem provides significantly more information than the
evolution condition, as is evident at once on considering that the Prigogine theorem is obtained from the evolu-
tion condition only on the assumption that the transfer law with constant coefficients and the Onsager reci-
procity relation are true [16].

It remains to point out that there has already been positive experience of the use of the Prigogine
theorem in considering nonequilibrium steady states of fairly diverse thermodynamic systems [17, 181.
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In conclusion, we note that considerations similar to those above are also possible for spin detonation
waves [19], since, as shown in [20], the average over the cross section and time of the pressure at the front
of a spin detonation wave coincides with the pressure behind a shock wave moving at the Chapman—Jouguet
velocity.

NOTATION

vy, velocity of detonation wave; v,, gas velocity behind wave; s, entropy of unit mass of gas; w, enthalpy;
V, specific volume; p, pressure; j, density of mass flow through wave; T, temperature; ¢, velocity of sound;
P, production of entropy; ¢, specific heat of reaction; Cp, Cy, specific heats of unit mass of gas at constant
pressure and volume, respectively, Indices: 1, initial gas; 2, combustion products; *, Chapman—Jouguet
point,
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