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It is concluded that there  exists  a cer ta in  c lass  of thermodynamic  sys tems  for which the P r igo -  
gine theorem is satisfied in setting up a steady state significantly different f rom a equilib- 
r ium state. 

The Pr igogine theorem is a theorem of the thermodynamics  of i r r eve r s ib l e  p rocesses .  It a s s e r t s  that 
a steady (i. e., t ime-independent) state of a thermodynamic  sys tem in which i r r eve r s ib l e  p r o c e s s e s  occur  is a 
state corresponding to the minimum possible production of entropy in the given conditions [1, 2]. The Pr igo-  
gine theorem has been proved for var ious  thermodynamic  sys tems  (homogeneous, heterogeneous,  continuous) 
on the assumption that this steady state is c lose  to equilibrium, when it is  possible to use a phenomenological  
or  genera l ized t r ans fe r  law with constant  coefficients,  and also the Onsager  rec iproc i ty  relation [1-3]. It 
r emains  to es tabl ish the validity of the Pr igogine theorem for  the setting up, in a thermodynamic  system,  of 
steady states that are  far  f rom equilibrium, i . e . ,  s tates in which the production of entropy is finite. 

The presen t  work examines an example of the setting up of a steady state that is,  on the one hand, signi- 
ficantly different f rom a quasiequil ibrium state and, on the o ther ,  is cha rac te r i zed  by the minimum possible 
production of entropy, i . e . ,  sat isf ies  the Prigogine theorem. 

We cons ider  the propagation of detonation waves in a br isant  gas which is initially at rest ,  for two cases:  
plane waves induced at the end of a cyl indr ical  tube with thermal ly  insulated walls and spher ical  waves in- 
duced at some point of space. 

According to cu r r en t  ideas [4, 5], the leading edge of the detonation wave is a shock wave in the initial 
gas. In this wave, the gas is compres sed  and heated to such a degree  that combustion is initiated. As a 
result ,  heat is l iberated and, in the case  of a purely endothermic react ion considered below, the p r e s s u r e  
of the gas dec rea se s  as long as the react ion continues. In front of the detonation wave, the gas pa r ame te r s  
and, in par t icu lar ,  its entropy do not change. In the wave the entropy of the gas increases ,  since its leading 
edge is a shock wave and, behind this edge, combustion occurs  and heat is l iberated. After  the detonation wave 
has passed  (at the end of combustion), the gas motion in the cases  considered is again isentropic.  

Plane and spher ica l  detonation waves may be induced, for  example, by a sharp increase  in pressure .  
Direct ly  af ter  they are  induced, the plane and spher ical  detonation waves are  nonsteady in the general  case. 
However,  af ter  a cer ta in  lapse of t ime, they become steady; i .e . ,  they attain some constant velocity [5, 6]. 

In other  words,  the detonation wave is an open thermodynamic  system,  in which i r r eve r s ib l e  t r an s fo rma-  
tions occur.  Setting up steady plane and spher ical  detonation waves may be considered as an example of the 
p roces s  of establishing a steady state in such a system. 

After  the considered detonation waves have been induced, the gas velocity at the points of induction (at the 
closed end of the cyl inder  and at the center  of the spher ical  wave) becomes zero.  In both these cases ,  m o r e -  
over,  none of the given cha rac te r i s t i c  p a r a m e t e r s  has the dimensionali ty length, and therefore  the gas motion 
a r i s ingas  a result  o f t hepas sage  of a steady detonation wave should be self-modeling.  If this is so, and if it is 
assumed additionally that the gas velocity in front of the wave is  zero,  and that the gas in front of and behind 
the wave is ideal, it is  possible  to show [7] that the gas velocity behind a steady detonation wave (whether 
plane or  spherical)  cannot be subcrit ical .  On the other hand, in accordance  with the principle of revers ibi l i ty  
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[8], this velocity cannot be supersonic,  since the gas velocity behind the shock wave (that is, the leading edge 
of the detonation wave) is subcri t ical ,  while the combustion in the detonation wave is  endothermic. (Accord- 
ing to the principle  of revers ib i l i ty ,  a subcr i t ica l  flow velocity may be increased  by heating only to the velocity 
of sound. ) Hence, the gas velocity behind the steady detonation wave must  be equal to the local velocity of 
sound or, in other  words,  the wave muse be a Chapman--Jouguet  wave. 

As is known, there  have been many successful  exper imenta l  conf i rmat ions  of this conclusion [5, 9]. 

Using the well-known procedure  [7] of thermodynamic  t rea tment  of a shock wave, we shall show that 
the velocity v~ of the Chapman-Jougue t  detonation wave and the entropy s~ of unit m a s s  of gas  behind the wave 
are  the minimum possible values for  the sys tem p a r a m e t e r s  of the initial gas. However,  we must  f i rs t  make 
the following remark :  Chapman [10] calculated the velocity of the detonation wave on the assumption that it was 
a minimum, whereas  Jouguet [ t l ,  12] assumed that the entropy of the gas behind the wave was a minimum; 
C r u s s a r d  [13] showed that these assumptions were equiva,lent, while Zer  dovich [14] was the f i r s t  to put t h e m  
on a r igorous  basis.  Thus, the proof  below that v~ and s 2 are  minimum values should be cons idered  ex- 
clusively as a subsidiary simplifying aspect  of the presen t  work. 

The condition of continuity of the mass ,  momentum, and energy flows through the detonation ~vave im-  
plies that 

w i - -  w~ + Vi + V2 (p, _ Pl) = 0, (1) 
2 

where the subscr ip ts  t and 2 re fer ,  respect ively,  to the initial gas and the combustion products  behind the 
detonation wave; w is the enthalpy; V is the specific volume; and p is the p ressure .  

The dependence P2 (Ve) corresponding to Eq. (1) -- cal led the detonation adiabatic curve -- is shown in 
Fig. 1, together  with the point Pl, V1, which expresses  the state of the initial gas. (Of course ,  Pl, V1 lies 
below the detonation adiabatic curve. ) 

The condition of continuity of single m a s s  and momentum flows through the detonation wave gives 
another expression,  f i r s t  obtained by Michelson: 

p.~ = pl + j2 (V i __ V2), (2) 

where j = vl /V 1 is the density of the m a s s  flow through the wave. 

In the plane (P2, V2) in Fig. 1, this relat ion gives a s traight  line passing through the point Pt, V1, since 
it was derived without assuming continuity of the energy flow, and should therefore  be valid for  the initial 
gas  in any section within the detonation wave, and also for  the combustion products.  

For  the sake of brevity,  let us say that the Chapman--Jouguet  point in the plane (P2, V2) is the point of 
in tersect ion of the detonation adiabatic curve  and the Michelson straight  line. Thus, taking into account the 

* 
above r e m a r k  on the gas velocity behind the detonation wave, we must  show that at the point P2, V* in Fig. 1 

* 
the velocity v 1 and the entropy s~ are  minimal,  and that v~ is the velocity of sound. 

Using Eqs. (1) and (2), it is not difficult to show that 

j~v~ w., -; j~V~ (3) 
w ~ ,  2 2 

For  given constant values of w 1 and VI, it follows that 

2 ~  d (]~) = dw 2 - )  d (]") @ j2V~dV~_. 

In accordance  w[th well-known thermodynamic  relat ions,  the differential dw a may be written in the form dw 2 = 
T~ds~ + V2dP2 , after  which we obtain 

v~-v~ T~ 
dp2 = 2V 2 d (j.2) _ ~V., ' dsz" - -  J'2dV2" 

On the other hand, differentiating Eq. (2) and solving it with respec t  to dP2 gives 

dp2 = (Y 1 - -  Y~) d (j~) - -  j2dV~. (4) 

Af te r  equating the two express ions  for  dp2, we obtain 
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Fig. 1. Detonation adiabat ic  cu rve  (1) 
and l~Iichelson s t ra igh t  l ines  (2); ~ois the 
angle between the Michelson s t ra igh t  
line and the P2 axis.  

T,ds 2 _ (V, - -  V2)2 d (i 2) 
2 

(5) 

o r  

ds~_L= (Vx--V2) 2 1 > 0 .  
d (]3) 2 T 2 

Thus,  i t  fol lows f rom Eq. (6) that  i n c r e a s e  in j2 is  a s soc ia ted  with i nc r ea se  in s 2. 

Cons ider  again Fig. 1 fo r  the angle ~: 

tg ~ = p" - -  p' 
V: - -  V, 

and in accordance  with Eq. (2) 

In the case  of a s t ra igh t  l ine joining the points Pl, 
poss ible .  Hence,  in view of the definition of j (j = vl/V1) the values of the veloci ty  v 1 and, according to Eq. 
(6), the ent ropy s 2 co r respond ing  to this  s t ra igh t  line a re  the min imum possible .  

Hence we now show that  at the point p 2, V2, v2 is equal to the veloci ty of the sound. 

We again use  Eq. (4), subst i tut ing into it the identi ty 

dr ,= (  ~ dp,+ ( ~ aso, 
\. ap2 /s~. k as, /p~ " 

and also  the expres s ion  for  ds 2 f rom Eq. (5). 
V* 2, s ince j is a min imum,  

(6) 

tg ~ --- i 5. 

V 1 and p~, V~ :, the va lues  of 9 and tanq~ a re  the min imum 

We then divide by dp2 and take into hccount that at the point p~, 

d(j~ ) -~p~l "=o. 

As a resu l t ,  we find that  at the point P2*, V~, 

I + j~ (.OV2 ~ v~ 
0~-2  is: = 1 - - ~ -  = 0  

o r  

1 0 6 6  



since 

. /  0 p  
C ~  V 

* and s~ are minimal,  the production of entropy P* in the Chapman--Jouguet detonation wave is Since v 1 
also a minimum. In fact, the production of entropy in the thermodynamic sys tem [1, 2] is the increase  inuni t  
t ime of that par t  of the entropy which a r i ses  in the sys tem itself. Accordingly,  the production of entropy P 
over unit a rea  of an:~ plane or  spherical  detonation wave is 

1 
p = ~v--V~ (s 2 --s~),  

and 
p .  ~ -  1 

v~- ~ ~ - '~) 

is the minimum possible value. 

Moreover ,  P* is finite for given pa rame te r s  of very  large amplitude, for example, in the case  of a 
strong detonation wave, when the speci f ic  heat of react ion q is much l a rge r  than the internal thermal  energy 
cvtT1 of the initial gas 

and 
T2 T 1 

�9 T . T 
0 0 

where Cp and c v are  the specific heat of unit mass  of gas for constant p r e s s u r e  and volume, respectively,  
and ~r = Cp/Cv, While 

2z2 q 
• 1 c~2 

and 

2(• 2 - -  1) q p~ = p~ 

Thus, in fact, the example given here  may be considered as an example of the establishment in a thermo-  
dynamic sys tem of a steady state, on the one hand, significantly different f rom quasiequilibrium and, on the 
other, cha rac te r i zed  (in agreement  with the Prigogine theorem) with the minimum possible production of en- 
tropy. 

On this basis ,  it may evidently be assumed that there  exists a cer tain c lass  of thermodynamic systems,  
and i r r eve r s ib le  p roces se s  occurr ing in them, for which the Prigogine theorem, although as yet  unproved, is 
sat isfied in establishing significantly nonequilibrium states.  

An analogous asser t ion  -- admittedly in implicit  form -- was made in the second par t  of [15], when a 
gas consist ing of molecules  with quantized energy was considered. 

The next step, as we see it, is to subject this conclusion to detailed scrutiny and, if possible,  to provide 
a s tat is t ical  basis  for it. Actually, nonequilibrium states are at present  studied using the evolution condition 
ra ther  than the Prigogine theorem [16]. However, "the existence of the evolution condition is a direct  con- 
sequence of the condition of stable equilibrium, and therefore  an indirect  consequence of the second law of 
thermodynamics"  [16]. Accordingly,  the Prigogine theorem provides significantly more  information than the 
evolution condition, as is evident at once on considering that the Prigogine theorem is obtained from the evolu- 
tion condition only on the assumption that the t rans fe r  law with constant coefficients and the Onsager rec i -  
proci ty  relation are  true [16]. 

It remains  to point out that there has already been positive experience of the use of the Prigogine 
theorem in considering nonequilibrium steady states of fair ly diverse  thermodynamic  sys tems  [17, 18]. 
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In conclusion, we note that considerations similar to those above are also possible for spin detonation 
waves [19], since, as shown in [20], the average over the cross section and time of the pressure at the front 
of a spin detonation wave coincides with the pressure behind a shock wave moving at the Chapman--Jouguet 
velocity. 

N O T A T I O N  

vl, velocity of detonation wave; v2, gas velocity behind wave; s, entropy of unit mass of gas; w, enthalpy; 
V, specific vohune; p, pressure;  j, density of mass flow through wave; T, temperature; c, velocity of sound; 
P, production of entropy; q, specific heat of reaction; Cp, Cv, specific heats of unit mass of gas at constant 
pressure and volume, respectively. Indices: 1, initial gas; 2, combustion products; *, Chapman--Jouguet 
point. 
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